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We present parallel NC algorithmns for recognizing reducible flow graphs.

and for finding domintors, minimium feedback vertex sets, and a depth tAm

search numberng in an rfg. AlR of Ohem algorithms run in polylog parallel time

using M (n) processors, where M (n) is the number of processors needed to mul-

tiply two n xi matrices in polylog time; this is the best processor bound curradty

knuwn for polylog-tim paralle algorithmns for directed grh.

We show that finding a iniminn feedback vertx set in vertex-wighted

rfg's or finding a minium feedback arc set in arc-weighte rfg's is P-comnplete.

For arc or vertex weights in unary, we present RNC algorithmns for diem prob-

lems and sbow that thes problem awe in NC if arid only if the problem of -

fiding a maximumn matching is in NC. I
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1. IniUlvrOtdo

Reducible flow gaphs (rIg's) are graphs tha model the control structure of computer pro-

glum.. They e used extensively in problems on code opummaton and global data flow analysis.

Several linear time sequential algorithms for these gaphs ae known, including algorithms for

recognizing rfg's [Tal, GaTa], for finding domlnatom [Hal and for finding a miniimm feedback

vertex set (FVS) [Sh]. The basis for all of these fast sequential algorithms is a depth first seatch on

the input graph. Rcenly, we have developed polynomal-ime, algorithms for fnding a minmum

weight FVS in vertex-weighted rfg's and a minimum feedback arc set (FAS) in arc-weighted or

unweighted rfg's WRal]. These algorithms make extensive use of algorithms for network now

(FoFu, La. PaSt, Ta2, GoTa]. It is also known that the sequential complexity of these Latt prob-

lems is at least that of finding a minimum cut in a Bow network [Ral, Ra2].

In this paper we give parallel NC algorithms for recognizing rfg's, for finding dominators,

and for finding a minimum FVS in an unweighted rfg. We note that the problem of finding a

minimum FVS in cyclicaUY reducible graphs, a class closely related to rfg's, is reprte to be P-

complete in [BoDAPe]. We also give an NC algorithm for finding a depth first search (DI S)

numbering for an fg however, none of our other parallel algorithms make use of this DFS

numbering. The processor bound for all of these NC algorithms is the number of processors need

by an NC algorithm to multiply two nx matrices. This bound is good with respec to currem

NC algorithms for directed raphs, since most of these algorithms require this number of proces-

sors.

We show that if arbitrary weights are allowed, the weighted FAS and FVS problems on

rfg's are both P-complete. Hence fast parallel algorithms for these problems appear unlikely to

exist. For the case when the weights ar in unary, we presmt an RNC algorithm for the FAS

problem on rfg's. We also give NC reductions between the weighted FAS problem the

unweighted FAS problem, the weighted FVS problem and the problem of Biding a minimum cut

in a flow network (when weights and capacities are in unary). Thus if any one of these problems

is in NC, then all of them would be in NC. In particular, am NC algorithm for the maximum

~ . ...



matching poblem would give NC algorithm for thes three publem on rfg's, and an NC algo-

rithmi for any one of these three pioblmns would, in trn, give an NC algorithm for maximum

A pelimmary verson of this paper appeared in DWI. Some of the NC algorithms inthe

prsem paper use a smaller mnber of processors than the corrnsponding ones in CR3].

This paper is orgulnd a folows. In section 2 we provide definition. In section 3, we

present our parallel algorithms for perocessig an rfg. In section 4 we prese a parallel algo-

rithm for finding a minur FVS in an unweighted fg. Finally in section 5 we give an RNC

algorithm for finding a minimum FAS in an unweighted rfg, and present P-completeness results

for the weighted FAS and FVS poblems on rfg's.

* 2. Definitionis

2.1. Model of Parallel Computation

The Pamalel model of computation that we will be using is the PRAM model, which consists

of several indeenden sequential pocessors, each with its own private memory, mommunicat

with one another through a global memory. In one unit of time, each pocessor can read one glo-

bal or local memory, execute a single RAM operation, and write into one global or local memory

location.

PRAMs ar classified according to restrictions on global memory access. An EREW PRAM

is a PRAM for which simultaneous access to my memory location by different pocessor is for-

bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no

SilneoUS writes. A CRCW PRAM glows simultaneou reads and wrie. In this cae we have

to secify how to resolve write conflicts. We will use the COMMON model in which al prooes-

sors participting in a coocurrent wrie must write the same value. Of te thme PRAM models we

have listed, the EREW model is the most rietlive, and the COMMON CRCW model is the

most powerful. It is not difficult to see that any algorithm for the COMMON CRCW PRAM that

ru in parallel dime T using P processor. c be simulaed by Un BREW PRAM (amd hmce by a
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CREW PRAM) in parallel tume TbgP using doe samie number of processors, P.

Defne polyiog (n)%kO ogn). The class NC is the class of problems solvable in

polylog (n) parale time with a number of processors polynomial in n, where n is the size of the

input. This class is generally accepted to charateiz the class of problems that can be solved

feasibly in parallel.

The class P is the class of problem solvable by a sequential algorithm running in polyno-

mial time. A problem is P-complete if every problem in P can be reduced to it in logspace. A P-

complete problem is in NC if and only if NC=P. Since it is widely conjecured that NC is a

proper subset of P, showing a problem to be P-complete is strong evidence that the protblem is not

in NC.

* For problems in NC, wt would like to develop algorithms that run in polylog parallel time

*and also use a small number of processors. For undirected graphs there are algoritms known for

several problems that rum in polylog tim using a linear number of processors (or lem) on a

PRAM; these problems include graph connectivity, bicosmnectivity and tricimctvity, s-e

numbering, planarity. etc. For directed graphs unfortunately. such efficlemi parallel algorithms

are not known mainly due to the tranitiv cloaawe bottleneck. The best parallel method known at

present to test reachability fromu one vertex to aother in a directed graph is to find t transitive

closure: of the adjacency matrix of the graph. To compute this in polytog time require n proces-

sors (to within a polylog facto), where cc is die mat mubpU cation evponent. which is currnty

2.375 (but for practical computations should be taken as 3). Thus, since rfg's are directed graphs.

all of the algorithms we present in this paper are affected by the transitive closure bottleneck.

The algorithms we develop in this paper make use of some well-known basic parallel algo-

rithms as subroutines. We conclude this section with a brief review of tes algorithms. For more

on the PRAM model and PRAM algodrims see [Karfal.

I. Boolean matri mdplicatin and transitve clowe. he standard matrix mulilcto alg-

rithm can be parailelized to give a const= &m algorithm usin X3 procesor On a COMMON



PRAM to find die product of two n x Boolean matriceL Since (1+8)0, for man, gives the tran-

sitive closure " of an xn Boolean matrix B, B" can be computed using logn stages of

Booleam matrix multiplication by repeated squaring and thus in 0 (logn) time on a COMMON

PRAM with n3 processors. The more sophisticated matrix multiplication algorithms (that work

for matrices over a ring, and can be adapted to Boolean matrix multiplication) lend themselves to

paaleiztinon an EREW or CREW PRAM. ThUS multiplication of two n xn Boolean matrices

can be done in O (logn) time with M (n) m processors on an EREW PRAM, and hence B ca

be obtained in 0(og2n) time using M (n) processors on an EREW PRAM.

In many of the algorithms we present, the processor count is dominated by the number of

processors needed to multiply two n xn Boolean matrices. The steps that do not require matrix

multiplication typically need 0 (n 2) processors In such cases, we will state our processor-time

bound as parallel time t (n) using ( (n) processors. This will imply that the algorithm runs in

time t(n) with 0(n 3 ) processors on a COMMON PRAM, and it rns in time O(t(n).logn) with

0 (n) processors on an EREW or CREW PRAM. Any future improvement in the processor

count for matrix multipication on any of these types of PRAM will cause a corresponding

improvement in the processor bound for the algorithm, since the remaining steps need 0 (n2) pro-

cessors

2. Preq smm: Let + be an associative operation over a domain D. Given an ordered list

<xt," ,x > of n elements frm D, the prefix problem is to compute the n-1 prefix sums

$±xj ,4=1, .,- . Is problem has several applications. For example, consider tie problem

of compacting a sparse array, i.e., we are given an array of n elements, many of which are zero,

and we wish to generate a new array containing the nonzero elements in their original order. We

can compute the position of each nonzero element in the new array by assgning value 1 to the

nonzero elements, and computing prefix sums with + operating as regular addition.

The n element prefix sums problem can be computed in 0 (lop) time using n/logn pro-

cessors on a EEW PRAM, assuming unit time for a singe + operation.
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3. List Ranking: This is a generaization of prefix sums, in which the ordered list is given in the

form. of a linked list rather than -n array. List raning on n elements can be computed by a sim-

ple algorithm in O~Og) time using n processors on an EREW PRAM; more elaborate algo-

uithrns for the problem n in 0 (logp) time using n /logn processors.

4. Tree contraction: Tree contraction is a method of evaluating tree functions efficiently in paral-

leL The method transforms the input tree using two operations Rake and Compress. The opera-

tion Rake removes leaves from the tree. The operation Compress halves the lengths of chains in

the tree (a chain is a sequence of vertices with exactly one hncming arid outgoing arc in the tree)

by removing alternate odes in the chain and linking each remainig ixde to the parent of its

parent in the original tre. The Contract operation is one application of Rake foflowed by one

application of Compress. It can be shown [MIfRe] that 0 (loga) applications of the Contract

operation to an n node tree are sufficient to transform the tree into a single vertex. This contrac-

tion can be done in 0 (loga) time with n processors on a CREW PRAM. More elaborate algo-

E rithms for this problem run in 0 (lopa) time with a /loga processors on an EREW PRAM.

Some of the algorithms we will present in this paper will use a modified t contraction

method, which we describe at the end of section 3.

2.2. Graph-theoretc Definitions

A directed graph G=(VA) consists of a finite set of vertices (or nodes) V and a set of arm

A which is a subset of VXV. An arc a=(vj1 v2) is an incoming arC to V~2 and an outgoing arc

*from v1. Vertex v I is apredecessor OfV 2 andV2 is a succesor of v 1; v I is the tai of a andV2 is

its head. Given a directed graph G=(V,A) and a set of arcs C, we will sometimes use the noti-

6w tion C r-G to denote the set C r)A An arc-weighted (vertex-weighted) directed graph is a

directed graph with a real value on each arc (vertex).

A directed path p in G from vertex u to vertex v is asequence of arcs a1, ar in A such

th a (w,wj+),l=l, -,r with w =a and w,.4.1 v. The path p passes through each

w* wj "r +1. A directed path p frmuto vis a cif u v. ADA isa directedacyclic
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grap i.e., a directed graph with no cycle. A rooted directed graph or alow graph G=(VA,r) is a

directed graph with a distinguished vertex r such that there is a directed path in G ftom r to

every vertex v in V-(r).

A rooted tree is a flow graph T-(V .,r) in which every vertex in V-(r I has exactly one

incoming arc. If (u,v) is the unique incoeming arc to v then u is the parent of v, and v is a child

of u. A eis a vertex in a tree with no outgoing arc. TMh heght of a vertex v in a tree is the

length of a longest path frm v to a leaf. eheight of a tree is the height of its rooL Aforest is a

collection of trees.

Let G(VA,'r) be a rooted DAG. A vertex u is a descendant ofvertex v if either u=v or

there is a directed path from v to u in G. The vertex u is a proper descendant of v if u *v and u

is a descendant of v.

Let G =(V A) be an arc-weighted directed graph. A set F cA is a feedback arc set (FAS)

for G if G'=(V ,A -F) is acyclic. The set F is a mbmwn FAS if the sum of the weights of arcs

in F is minimum. Analogous definitions hold for afeedback vertex set.

Let G=(VA) be a directed graph, and let V'V. The subgraph of G inducedby V' is the

graph G, (V' )=(',A'), where A'-A n-V'X . The graph G-V is the subgraphofG induced on

~V-V.

A reducible (Nlow) graph (or rfg) is a rooted directed graph for which the rooted depth first

search DAG [Ta2] is unique. Thus, the arcs in a reducible graph can be partitioned in a unique

way into two sets as the DAG or forward arcs and the back arcs.

An alternate definition of a reducible graph (due to [HeUIJ) is stated below.

Definition 21 [HeU1] Let G =(V A ,r) be a low graph. We define two transfom i on G:

Transformation TI: Given an arc a =(v ,v) in A remove a from A.

Transformation T2: Let v2 be a vertex in V-(r) and let it have a single incoming arc

a=(v 1,v2). T2 eplaces V iV2 and a by a single vertex v. Predecessors of v I beco pred&-

cessors of v. Successors of vI and v2 become succesors of v. There is an ,rc (v,v) if and

r A * A



only if there was formerly an arc (V2,v 1) or (v 1,v 0.-

G is a reducibe flow graph (Ifg) if repeated applicatiom of TI and T2 (m any orfr) reduce G to

a single vertex.

Let G (V,A,r ) be a redcible graph amd let b-(u,v) be a back arc in G. Then b spans ver-

texw (orw is n die span ofb) ifthere exiss apath from v tou inthe DAG of G that passes

through w. Given two vertices uv e V, vertex u dominates vertex v if every path from r to v

passes through u (note d u dominates itsel.

It is well-known [AhUl] that t e dominator relation can be represented in the form of a tree

rooted at r, the root of the flow graph G. This tree is called the dominator tee T of G. The des-

cendents of a vertex v in T are the vertices dominated by v in G. A vertex v' is Lbnedatety

doninamed by v if it is a child of v in T.

Given a set V'rV the dominator forest Fv, for V represents the dominator relation rems-

tictedtothe setV'. Let V% (veVIv istheheadofabackarcinG). Weasuumethatr isthe

head of a back arc in G. Hence it is easy to see da Fv, is a tree we cal it the head domi r

tree of G and denote it by Th. This tree can be constructed from T by applying tranfrmation T2

of Definition 2.1 to each vertex v inT that is not a head of a back arc inG.

3. Parallel Algorithms fbr Preproceuing RFG's

In this section we present NC algoridtns to test if a rooted directed graph is an rfg, to con-

smitdte head dominator tre for an rfg, and to find a DS tree in an rfg, we alsointroduce a

modified tree contraction method in this section.

3.1 Testing flow graph reducibility:

Input: G =(V Ar) with adjacency matrix B.

1. Test if G is a flow graph, i.e., test if every vertex in V-(r) is reachable from r.

Form B, t transitive closure of B and check if every nondiagonal element in row r has a

1.
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2. Commrc a tee T rooted at r using the algorithm in [GaMi) to find a direcW breadth-first

seawh tree. Mark all ar in T as forward (f) arcs.

3. For each arc (u,v) in G-T, mark (u,v) as b if v is an ancestor of u, and a f otherwise.

4. Delete all arcs markedb and check if resulting graph G is acyclic. (If G is an rfg then G'

must be acyclic.)

Form transitive closmre of the adjacency matrix B' of G and check that for every i <J:.,

one of the two enties in position (U J) and posiion (j J) in B' is zero.

5. Compute dominators in G' using the algorithm in (PaoRa].

6. For each arc (uv) marked b inG, check if v dominates u. G is a rfg if and only ifv dom-

inates u for all arcs (u,v) marked b. "

Lemma 3.1 Algorithm 3.1 correctly determines if the input graph is an rfg.

Proof If G is an rfg. then its arcs can be partitioned in a unique way u forward and back arcs,

and for any back arc b =(u,), vertex v must dominate vertex u (HeUI]. Hence the tree T found

in step I must contain only forwad arcs ofG. Further, if anarc (uY,v) notin T is aback arcofG,

then v must be an acestor of u in T. Further, consider any arc (uv), with v an ancestor of u in

T. Then arc (u,v) completes a cycle inG. consisting of itself, followed by the path in T from v

to u. One of these arcs must be a back arc. Since all of the arcs in T am forward arc it follows

that (,s,v) must be a back arc. Hence steps 2 md 3 of Algorithm 3.1 correctly identify the forward

and back arcsof G if G is an rfg.

A flow graph is an rfg if and only if its set of arcs ca be partitioned into two sets E I and E2

such thatE 1 formsan acyclic subgraphD of G, and foreacha=(u,v) inE 2, v dominates u inD

[HeUl]. Thus all of the tests in steps 4, 5 and 6 am satisfied if ad only if G is an rfg.[]

Steps 1., 2, 4 and 5 take 0(lopn) time using Q(n) processors. Steps 3 and 6 can be imple-

mented in 0 (logn) time using a linear number of processors using tree contraction. Hence the
c
complexity of this algo~rithm is 0 (logi) paalel time using Q (n) processors.
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32 Forming Th, the head dominator freefor G:

1. Use algorithm 3.1 to construct DAG G.

2. Use the algorithm in [PaGoRa] to compute the dominator tree T for DAG G".

3. Use tree contraction to extract the head dominator tree Th from T.

Steps I and 2 take 0(logn) time with Q (n) processors, and step 3 takes 0 (logn) time with

n processors. Hence step I dominates the complexity of this algorithm.

33. NC algorithm for finding a DFS rwmbering for an rfg G=(VA ,r)

I. Use algorithm 3.1 to construct the DAG G'.

2. Find a DFS tree in DAG G' as follows.

i) Identify a vertex v with more than n/2 descendents for which every child has at most n/2

3 descendents:

Fid the transitive closure B* of B". Determine the number of descendents of each vertex

as the sum of the nondiagonal entries in its row in B". Each arc in G' compares the number

of descendents of its head with the number of descendents of its tail, and marks its tail if it

is not the case that the head has at most n /2 descendents and the tail has more than n /2 des-

cendents. 11e (unique) unmarked vertex is v.

ii) FindapathP fromrootr tov:

Find a directed spanning tree for G' by making each vertex with an incoming arc choose

one such arc asits tree arc. FormP asthe pathinthis tree from r tov.

iii) Associate each descendent V of v with the largest numbered child of v (numbering accord-

ing to some fixed order) from which it is reachable; associate each vertex V not reachable

from v with the lowest vertex in path P from which it is reachable:

Use list ranking to number the vertices on P in increasing order from the root, followed by

the children of v in some fixed order. Replace all nonzero entries in the columns of B'
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cor1cspong to these nodes by their new number. For each row, find the maximum num-

bered entry in that row, and identify it as the vertex with which the row vertex is to be asso-

ciated.

iv) Recursively solve problem in subdags rooted at the newly numbered vertices, together with

their descendants as computed in step iii.

Lemma 3.2 LetG=(VA,r) be a DAG, with IVI=n. There exists a unique vertex meV with

more than n /2 descendants for which every child has at most n /2 descendants.

Proof Straightforward, and is omitted.[].

Lemma 3.3 Algorithm 3.3 correctly finds a DFS tree in an rfg.

Proof We observe that the algorithm constructs a DFS tree consisting of the initial path P to v,

followed by a DFS on the vertices reachable from the children of the largest nmnbered child of v,

followed by vertices reachable from the second largest numbered child of v (but not reachable

from the largest child of v), ... followed by vertices reachable from the smallest numbered child

of v (but not reachable from larger numbered children of v), followed by vertices reachable from

nodes on P-(v) in reverse order of their occurrence on P. It is not difficult to see tha this is a

valid depth first search.O

Step 2i takes 0 (log) time using Q(n) processors. Step 2ii is very efficient: it takes con-

stant time using a linear number of processors on an EREW PRAM. Step 2ii takes 0 (ogn) time

using n2 processors on an BREW PRAM. Finally the recursive steps take logn stages since each

new subproblem is at most half the size of the previous problem; further the sum of the sizes of

the new problems is less than the size of the previous problem and hence the processor count is

dominated by the first stage. Thus the algorithm takes 0 (Ioen) time using Q (n) processors.

Other NC algorithms for finding a DFST in a DAG are known (GhBh].

In the next two sections we present parallel algorithms to find minimum feedback sets in

rfg's. Our algorithms require computation on the head dominator tre T of the input rfg
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G-(VA ,"). For this we will use a variant of tree contraction. We conclude this section with a

description of this modified ree con ation method.

Recall the a chain in a directed graph G is a path <v , vk > such that each vi has

exactly one incoming arc and one outgoing arc in G. A maxmal chain is one that cannot be

extended. A eV chain <vt .- • ,vg-.,vt > in a rooted tree T-(VA ,r) consists of a maximal chain

<v, ,v ->, with y1 the unique child of vi-1, and with yl, a leaf.

The two tree operations we use in our modified tree contraction method are Rake and

Shrink. As before, the Rake operation removes leaves from the tree. The Shrink operation shrinks

each maximal leaf chain in the cunmt tree into a single vertex.

Lemma 3A In the modified tree contraction method, 0 (logn) applications of Rake followed by

Shrink, suffice to transform any n node tree into a single vertex.

Proof Consider another modified tree contraction algorithm in which the Shrink operation shrinks

all maximal chains, including leaf chains, into a single vertex (one for each chain). This

modification certainly requires no more steps than regular tree contraction, and hence by the

result in (MiRe], transforms any n node tree into a single vertex in 0 og) time. But the number

of applications of Rake followed by Shrink in the above modified tree contraction method is

exactly the same as that in our modified tree contraction method, since the only diffeence is that

a chain gets shrnk in several stages, rather than all at once.[]
t"..

In our algorithms for minimum feedback sets, we will associate appeopriate computation

with the Rake and Shrink operations in order to obtain the desired result.

*. 4. NC Algorthm fbr Fining a Midmum FVS In n Unwdghted Rt,

We fAm review the basic ideas in Shamir's polynomial time sequential adodthm [Sh].

Given an rfgG=(VAr) together withapartial FVS S forG, ahead v inG is acdve if there is a
DAG path fom v to a con d tail, which is not cut by vertices in S. A maxma active

Shead v is an active head such that none of its proper DAG descendas in G is m active head.

i i I l m H ll iI'.ii.
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The followig theorem is estalaed i [Sh.

Thrm 4.1 (ShLetG=(VAr)be an rg,and let S be asubset of aminimum FVS in G.If v

is amaximal active head in G wih respect toS, then S(v) is also asubset of aminimum FVS

inG.

* Using Theorem 4. 1, we obtain the following algorithm, based on the head dominator tree, to

construct a minimum FVS for an rfg.

4.1 Minimum FVS Algorithm

Inut An rfg G =(Y,r) together with its head dominator tree T1,.

*Outu.A set SVwhich is aminimum FVS for G.

* 1. ntiaIze S4

2. Repeat

a) S +-S jL, where Lis the set of leaves in T%.

rb) G -G -L, Ti,-Tt -L.

c) Find U, the set of beads in currntG that arenot active inG.

Fd) For each vertexv niotin U, find its closes jroper ancestor w in TA, diais not In U, and

Lmake w the parent of v.removeAll vertices in U r Th

We implement the above tree computations using our modified tree contraction method. In

L order to obtain a processor-efficient 'Ipleentation of the above algorithm, we define T*A, the

head-tail dominator tree of G. For each vertex u in G thit is a tail of a back arc but not the head

of any back arc inG, wese parent of u in7A, to be v,where v is ahead of aback arcin G, v

Sdominates u in G, and no child of v in TA, dominafts u inG. rA is the treeobtained ftoliTI, by

including these tail vertices of G (all. of which. will. be leaves in TA,). r,% can be omputed from

f G in a mnne similar to the computation of Tt (Algorithm 3.2). Our parallel algofthn will,

CUNZ
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perform modified tme contraction, on TA,. and will also transform rh to keep track of the current

stnuclue Of G.

The computation associated with a Rake step is exactly one application of step 2 of the

above algorithm: we add the leaves of the cunu tree Tb to S, aind del tem from TA, In TA,

we delete the subtree rooted at each of the vertices we deleted from TA. We then determine the

active heads infthecurreG. Ahead h is active in the ctrrent G if aindonly if itlies in Tl, and

at least one of its cor-lbFR-soning tails lies in t. This is easily determined for all heads in con-

stant time with 0 (m) processors ont a COMMON PRAM by having a processor for each back arc

*(uv), which informs vertex v if u if ini Ta/he Mwet U is then determined usthe set ofheads that

are not currently active. Each vertex in T,% (7Vh) which is not in U fnds its closest proper ancestor

in T,% (TOhtois notiU. nd makes it it nwparent. Veuticein U an then deleted from both

Th% and rA,. This computation can be done with tree contraction and takes 0 (lopn) time with

0 (n) processors on an EREW PRAM.

Now consider the operation Shrink. which shrinks each maximal leaf chain in TA, int a sin-

gle veiWex During the Shrink operation we will identify the vertices in these leaf Chain that

belong to S based on the following observation. Letm~ c~ 1,. ,vt> be a leaf chain, where vj is

the leaf. Suppose vi is in di minimum FVS S. Then the argestc < sch tha v~ is in S (ifsuch a

j exists) is immediately determined a the largest J <i for which there is some back edge (u v,)

suchtbatvj has apathto u inG-(vj). Iis isbecauuvj dominates al ki, hence mnycycle

containing vJ j <, which is cut by a vertex vk with k >i is certainly cut by vi; thus vj will

become a maximal activehead if vi is added toS.

Our computation for the Shrink operation determines for each vi in C, the larest j <i (if it

*exists) stichthat v, is in S if v isIn S. Thenfbr each i for which J exlsts we pace apohm

from j to vi. hs defles afo sF on (v 1.,Yv).Sncviis aleafn T,%t belongs toS.

Heac t vertices in C that belong to S am precisely those hum which v, i eachable in F. We

identify these vertices using regular tree contraction arnd add thm o S.



We now describe a method to compute v., for ecb v,. Each vk determines the largest i

(Ikk) such that vi dominates all of the coresoFing ftails of vA. and places this value in die kth

location of an array A [l.J . Each vertex vi Wqpect this aray and finds the largest position j

(Ij<1) scthtA( i.Then cleauly vjis the -np vetxi heldcan w htv is in

if is~ win S.

Each vi can determfiue its corresponding vj in 0 (logi) timen with I processors on an EREW

* PRAM, and hence this computation can be done for all vertices in die leaf chain in 0 (logp) time

with n2 processo=. (We do not attempt to be more efficient with this computation since die

- overall algorithm requires Q (n) processors and thus an 0() processor bound is adequate for

*our ed.

By Lemma 3.4, 0 (lop) applications of Rake and Shrink operations suffice to conI T,%

to a single vertex, and at this point we will have constructed a minimumn FVS S. Thus this gives a

parale algorithm to find a minimumn FVS in an rfg in 0 (logan) time using Q(A) processors. A

high-level description of die parallel algorithm is given below.

4.2 Par"ie Minimum FlS Algovidam

Input. An rfg G -(VAr).

Ouu. A set S aV which is a minium FVS for G.

1. Form TA and 7%; initialize S4.

2. Repeat

a) Rake leaves

i) Place leaves of Th in S.

ii) In r,deltethe mftm ooted ateach veeraked in stepi) in Th.

iii) For each vertex v in Th,deuemine if vis active bydcheckingifamy one of its

corrspodin tails is in T-A.

-'iv) Let U be the9K of verticesinT,% thatm not activeieada. For each vertev in Th (0A)



ht sninU, fndts closet p er ancestor w digtis ntin U and make it its new

parent in Th (7 'A).

v) Delete veutices in U from T1, and rA,.

b) Shrink leaf chais

Let <V 1,V2, yv1> be the leaf chain, with v, the leaf.

4 ~i) For each v& find the largest i (i ~k) such that vi dominates all of the coresponding tails

of vk, and place this value in location k of array A [ L.k

ii) For each vi use anry A [l..]to findthe largest position J (JJi) such that A U]<i. Place

an arc from vj to vi in an auxiliary graph F on vertices v 1, ,vj.

iii) Find the set of vertices frm which Y, is reachable in F and add these vertices to S.

iv) Delete vertices v i, .. vi ftc Tt and delete the subtrees rooted at these vertices from

Th.

v) Perform parts iii, iv and v of the Rake step.

wPntilThr4.

S. Finding a Minimum FAS In anUnweighted Rfg a&W Related Problenu

We first st some definitions and resuilts from [Ral], wich gives a poly'Kxnial-time

* sequential algorithm for finding a minimum FAS in an rfg. We then give an RNC algorthm for

this problem and related resuts.

A flow nefwrk G -(V A st,C) is an arc-weighted directed graph with vertex set V and arc

set A, where s and: tm vertices in V called the source mnd s"n respectively, and C is the cga-

city junction on the arcs wich specifies the atc weights, which awe always nonneguve. me~

m wuflow problem asiks for a flow of maximum value fim s to:t (swe [By, PaIfua Pa&%

. 7 Ta2] for definition of aflow). A cutC sepuitings nd: t sat ofuvctat beshuallpahftIm

s to:.t -IUcqacit of C is the suof tecpcu of arm; inC. A mnhin cur sepuaftgs

ad: IIs a cut of minimua capacity. It is well-known thet the valu of a umxmm flow is equa
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to the value of a mninimumn cut [FOFu].

Let G my ,) be an arc-weighted redtucible graph and let v be the head of a back arc in

G. Let b 1=(u iv 0. ,br -(a, be the back arcs in G whose heads are dominated by v. The

dombwaed back arc verme set of v is the set V, u(v'e V I V lies oni a DAG path from v to some

&4 xl,). Itis easytoetat vdominates allvertices in V,.

Defintion 5.1 Let G=(V.Ar) be an arce-weighted reducible graph with nonmegative arc weights,

and let v be the head of aback arc in G. For convenience of notation we denmeG, (V,), the sub-

graph of G indluced by the dominated back arc vertex set of v, by G, (v). The maxLmmnflow net-

*woofG withrespect tohead vis fow twork G (v) fonned by splitting eachbud h in

* G. (v) into h and h' (wee figure 1). All DAG arcs entering or leaving the original head h will

ntror leave the newly formed h; AUl back arcs entering the original h will enter h'. There will

be an arc of infinite capacity fium ff to a new vertex t. All other arc will inherit their capacities

~ from their weights in G. We will intrprv as the source and t as the sink of G,, (v).

Iit I
Contrutia bn (v rmGCV

Detffln S2 Lt G-(VA r bean a-esa eudl rp. edfmG vdeN

MI.
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cost madbu flow network with respect to heady inductively as follows:

P. If v dominates no other head in G thmG,.,(v ,,G,(v).

b. Let v ,'--,v, be the heads immediately dominated by v in G and let the capacity of

t: . minimm cut in G,,(vi) be c J=,.. ,r. Then G.(v=(VA) where V is the same as the

loll vertex set for G.(v) nd A =ars inG.(v)) tj acs in G. (v)j=1, - r •jF,, where

F, = {fv,v 8 )l i=I, • - r, with capacity off,, equal to c5 .

We call F, the mlncost-arc set for head v; if j is a head immediately dominated by head i then

* fO is the mincost arc from head I to head J.

Figure 2 gives an example of Gin(v).

,..

f4~ weigMt me, ca copwity in G..a Ig? 2

a b
' f~

t
!--

fgum 2

be mincost maximum flow netwoi with respect to head v for
the grah G-(VA Ar) of figure 1

r.
It is established in [Ial] that following algorithm demmines die cot of a minimum AS in

an arc-wdghtd reducible graph G. If G is an unweighted graph, then by the result in [Ra4] this

vaue also gives the maximum numbe of ac disjoint cycles in G.

Lin 5.1 Mnbun FAS Aigm o' fo R" cible Flow G-- .-
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hipqut. A reducible graph G=<V,r) with ixxinegative weights on arcs.

Output. The cost of a minimum FAS for G.

begin

1. Preprocess G: Label the beads of back arcs in G in postorder. Derive the head dominator tree

TI, for G. Introduce apointer fromeach vertex i inTI, (excep r) toits parent hi. Let the number

of heads be h.

2. For i-1, - -h process head i:

a. Find the capacity of minimum cut, ci, in G. (i).

b. IfL A oh nintroducemanarc of weigt ci frmm h, toti in G. (Note that G changes during

the execution of the algorithm so that G, (Q) is the same as G,= (i) if G were unchanged.)

3 .Output ch as cost of minimumFAS for G.

end.

We implement the above tree computations nc again using our modilled tree contraction

method. For a Rake step, we form G. (1), for each leaf I in Th mid comput cl, the capacity of a

minimum cut in G.m(1). I bA then we place an ac of capacity c, from AV to 1. Finally we delete

an leaves from the current Th.

Thei complexity of the Rake step is dominated by the complexity of computing minimum

* cuts in the mincost maximum flow networks aocited with the leaves of Th. The total size of all

* ~of these networks is 0 (m+n), whene n and n ane the number of amc and vertices, respectively,

in G. Hence, using the algorithm in [MfuVaVaj to compute minimum cuts, we can perform the

Rake step by a randomized algorithm tha rns in 0 og~n) paralle time with 0 (A -ns5 ) piecs-

son, on an EREW FRAhL

Mhe Shrink operati s a little more involved. We sam some familiarity with the reulits

in [Ral]. Let C =<v1, Yj > be a leaf chain in Th, with vV the leaf. During the Shrink operation.

we will determine te capacity of a minimum cut in Gm,(,i)J-1,.. We can then use this to

* costeut toG 5. (v),md ipmicethe currt G.
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Our parallel algorithm will process G. (vi1) in chunks For this we develop soroc notation.

LezG!W. l~gi:j I be the graph Gin(vi) with

a) All arcs dominated by v. deleted and replaced by single amc of infinite capacity from vj to t,

b) The capacities of the mincost amc (vt-..,v)k=i+l, , -J-1 set to-, and

~ c) The mincost amc (v,,v,) deleted.

The graph GU/+' will denote G,,(vi) with the capacities of all mincost arcs

(vA:-I~vk)* -1J1 set to -. We will denote the mincost arc from vj, to v~Jj>i in GM,(v)

by a1 and call it a chain mincost arc.

We will use the notation nij to denote the value of a minimum cut in Gja1, and mj to

denote the value of a minimum cut in G.(i). We define n'js.O if 1i and Xk=O if i-1+1.

Loumma 5.1 Let M be a minimoum cut in G.. (vi) diat contains a chain mincost arc ej. Then vj-..

is separated ftom vj by M.

U Proof Consider the vertex partition S tjT induced by M, where S is the set of vertices in the

* component containing vi in G-M. If both v1 4l and vj we in S (or T) then we can remove e

from M and still have a cut. contradicting the fact that M is aminimam oiL Hf v,.-, is in S and vj

is inT, duen vj-, is separated frinimv by the cut as required. Finally, vj in S and vj-.iin T is not

possible since every path from vi to vj must pas through vj-.0

Lem 5.2 Let M be a minimuma cut in G. vi). Then M contains at moat one chain mincost

arc.

Proof Suppose M contains two chain mincost arc a1 and ekj<k. By Lemma 1, vj... is

separated from vj by M. Hence every path ftom vi to vt is cut by M-(ekj. Thu M-{as) is a cut

for G, (vi) contradicting the fact that M is a mninimum coL[D

Lemme 5.3Let M be a mirimum cut inG8.(vk),for swe k, Mgluad let M sepent i fran

vi-1 for some ibk. Let N be a mainimnum cut in GV. Then NU(ei) is a minimum, cut for

Gm (vi), n~~~~~~Jj mi is the value of a minimnum cut In Gam. (vk). ad NiA~i iiu A o

G. (vk), whee M1 is aminimuminFAS for G(vi).
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ProofLet G'..(v*) be G.. (vk) with the capacities of mincost arcs (vji,vj)j =+,k+2, • • -

incresed to -. M wil conmine to be a minimum cut in G'.(vk) since M separates vi from vi_-

in Gj.,( ). Since M is a minimum cut, none of the as in M are dominated by v,, since M

would be a cut even if al such arcs ae deleted from it. Since M must contain ej, we can write

MM" Vj(e ), wherM" contains no mincost arc.

Now consider N. N is a minimum cut in G!V. Since all of the mincost arcs in G* have

infinite capacity, N contains no mincost arc, and every arc in N appears in G,.(v*). N must

separate vi-_ from v1 in GV, since there is a path of infinite capacity from vk to vi_. and from vi

to t in G.Hence NU(e.) separates v fno t in G,, (v). Finaly, IN IIM' I since W is a

cut forG . Hence NUj(e) is a minimum cut forGi,(vk).

By definition, the capacity of ei is the capacity of a minimum cut in G., (vi), which is mn.

Hence n -4*4 is the capacity of minimum cut in G. (vk).

Finally, since N has no mincost arcs and NU(ei) is a minimum cut for G. (vk), it fol-

lows from the results m [Ral that NiUj is a minuinum FAS for G,(vh), where Mi is my

minimum FAS for G. (vi.[]

Lenmma SA Let lWmil ..2< .<i4=jg+l be any sequence of indices. Let Nk be a minimum

cut in G. k- 1, r.' -I. Then N iUt# 2 U • N,_.Ikj~j is an FAS for G, (vi), where Mj

is an FAS for G,(vj).

Proof By induction on r.

Base: r=2. Suppose JJ. NI is a minimum cut in Gi. Hence NI must separate vj_ from vjin

Gii, since them is a path of infinite capacity frm v to vj-I and from vj to t in GW. Hence

NIU(ej) is a cut in G,.(vi). Hence by the results in (Ral], NIUMj is an FAS for G,(vi).

where Mj is any FAS for G,(vj). fjm1+I then we not that my cut in Gi + ' is an FAS for

G, (vi) as well.

Induction ste: Assume tha the smement of the kmma is um for al sequences of indices of

lnih rW '-I ories, and let rot'. By the bwe case, Njjis, is an FAS for G, (vi), whe M, is

U 4
~ .. ri

~• .
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any FAS for G,(v,). By the inductive hypotbesis, N2U "" .,W , is an FAS for G, (v).

HencNIU .. • ,W, t,*j is anFAS for G,(vi).[]

Lemma 5.S Let l.9i=i<i2< ... <i,=j+l be a sequence of indices such that there exists a

minimum cut in G,(v) that separates v4,- from v,,,k=l, -,p, where p=r-1 if jV1 and

pawr-2 if j-+l. Let Nt be a m tmin cut in G4.4*1,k-l. • r-l. Let Mi be a minimum FAS

for G, (vj). Then N IQ 7 . -. . 'ru1'4j is a minimum FAS for G.(vi).

ProofBy induction on r.

Base: r-2. Then i=li and ji 2. f j. I then the result fWows from Lemma 5.3. f j=1+l then no

minimum cut in G,, (vi) sepmaes any Y, fnmn vt-1. i <kL . Hece any minimum cut in GU+1

is a minimum cut for Gm (vi) and the result follows.

Induction step: Assume that the statement of the lemma is true for all sequences of indices of

lensth r=i'-l or less, and let r=r'. By Lemma 5.3 Nlk_&f. is a minimum FAS for Gt(vi),

where Mi, is any minimum FAS for G, (vi). By the inductive hypothesis, Ns.. ••. tj4 is j

a minimum FAS for G,(v8 ). HeceN1 ... k WjI is a minimum FAS for G,(v).[]

Let liJ be the minimum value of the sum i'4ii-... , , where

1li <hz< • <ir-i<JS,+l, and the indices 1j and their umber r-2kO am allowed to rog over

all permissible values Note that li+twni +I.

Leuna 5.6 Let l.=<ia< ... <i-j g+l be a sequence of indices such that there exists a

minimum cut in G.(i,) that separates %.,-I frm Y44 ml,. v, where p r-I if JSL and

p=r-2 ifj=L+l. Then the cost of a minimum MS for G,(vj) is 1i'mj.

Proof By Lemma 5.4, there exists a FAS in G,(v1 ) with cost nij4"jaj34... M''J j for any

sequence of indices i <j2< ... <js-l<J. By Lemma 5.5, a minimum FAS in G,(vi) has cost

+n 4 • +mj. Hence the indices 12," " -1 will contribute to the minimum in the

eX forl ij . Thus the cost of armmnimum FAS forG&(vi) is liJ+mj.[]

C.UeIaYr,

- -- ..
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5em .7 Let h-rQi+J)/21 -Then i. mnIi+pxY+tyj.

*Proof An easy proof shows that lij5mi IJ-+nxy44jan,, U1j i.+nZJ4lyiVli.[]

7be chrceiainin Lemma 5.7 leads to the foMowing implementation of the Shrink step

in the parallel algorithmn to find the value of a minimum FAS in an rfg.

5.2 Para"e FAS Algorithm for SHRINK Step

*Input Graph G. (v 1) with its associated head dominator path <V 1,V2, V >

1. Frti , Jdo

Compute 1U+' by &finin the value of a minimum cut in GU+'.

2. Forml,"

For j-l+l,"J+l do

Copt i.J by finding the value of aminimum cut in G U.

~ 3. ForkmI,2. skmogl do

for-i, . J-2*

for j-i+2k'+l J+2k-'+, ...+2* do

Let h4Q4-~Jy21

<*s lijiiP ~ P4+fJ)

4. Forlul," j outu i"'+ uvalue of minimum cut brG.,(v,).

LAt G. (v 1) have r vertices and s arcs. Step I raquires the computation of 1:Sr minimum

cuts in pmralI on graphs whose total size is 0 (r+s). Hen= this step can be executed by a ran-

domized algorktlu in O (log2r) time with 0( -0-) proceam on an EREW PRAM, using the

algorithmn in [MuVaVaj. Step 2 requite. the computation of 0(12) minimum cuts and in die

~~ worme case dhis requires; 0 (og2r) dine usingo0(ps 45) p n Pes Ixr a iwadomized aldrdu on

an BREW PRAM. 7Ue laer loop of scep, 3 (usin indices i ad J) can be execused in cous
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time With 0 (t2=,0 (r2) processors and hence step 3 can be executed in 0 (logr) time with 0 (r2)

processors by a deterministic algorithm on an EREW PRAM. Thus the complexity of the Shrink

step is dominated by stop 2.

The FAS algorithm uses the above Rake and Shrink operations logn times. Hence it is a

randomized algorithm that runs on an EREW PRAM in 0 (lo 3n) time using 0 (m .ns.5) proces-

sors. This is an RNC algorithm.

At this point we have the value of a minimum cut in all Gi.(v), where v is the head of a

back arc in G. Hence we can construct G.(v) for each such v and find a minimum cut in each

of these graphs in parallel using the RNC algorithm of [MuVaVa]. From this we can extract a

minimum FAS for G as follows: Place a pointer from each mincost arc (u,v) in any of these

minimum cuts to the minimum cut for G., (v). Now a minimum FAS for G consists of the set -A.

of arcs in G that are in some minimum cut that is reachable from the minimum cut for G,, (r) in

this pointer sructre. This is an easy NC computation and thus we obtain RNC algorithm to

find a minimum FAS in the rfg G.

Finally we present some results on the parallel complexity of findin feedback sets in

weighted rfg's.

Lemma 5.8 The foliowing problems are reducible to one mother through NC reductons.

1) Finding a minimum FAS in an unweighted rfg.

2) Finding a minimum weight FAS in an rfg with unary weights on arcs.

3) Fu'ding a minimum weight FVS in an rfg with umary weights on vertices.

* 4) Finding a minimum cut in a flow network with capacities in uary.

Proof: Polynomial-time reductiors between between 1), 2), and 3) we given in [Ral]. We note

that all of these reductions are NC reductions as well. We show that 4) reduces to 2): We use the

NC reduction in (Ra2] from the prbkm of finding a minimum cut in a genea flow network G

to the problem of finding a minimum cut in an acyclic flow network N. Minimum cut for N can

be obtained by finding a minimum weight FAS in grph G' derved from N by coalescing soCe

;7-U
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and sink

S We also have the result that 2) reduces to 4) since our parallel FAS algorithm uses 0 (logn)

applications of an algorithm for 4) together with some additional NC computation.]

Leim SS T7he following two problems are P-complete:

1) Finding a minimum weight FAS in an rfg with arbitrary weights on arcs.

2) Finding a minimum weight INS in an rfg with arbitrary weights on vertices.

* Proof: It is established in [Ra2] that finding minimum cut in acyclic networks is P-complete. Let

G ban acyclic network with source s and sink t. Let G' be formed fromG by combining s and

t into a single vertex r. Then, a is an arc-weighted rfg rooted at r and a minimum weight FAS

in G gives aminimum cut inG. Hence partIof the lemma folows.

We can reduce the minimum weight FAS problem on rfg's to the minimum weight FVS

* problem on rfg's by replacing each arc in the arc-weighted graph G by two arcs (uw) and (w ,v)

Sand assigning to w the weight of arc (u ,v). 17he original vertices in G are assigned a weight n M.

where W is the maximum weight of any arc in G,and n is the number of vertices in G. Itis

* easy to see that a minimumo-weight FVS in the new graph gives back a minimum weight FAS in

G having the same weight. This establishes par 2 of the lemma]]
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